Примеры решения задач по закону кирхгофа

Содержание

Правила (законы) Кирхгофа простыми словами: формулировки и расчеты

Примеры решения задач по закону кирхгофа

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях.

В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.
Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений».

Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода.

( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.
Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник: https://www.asutpp.ru/pravila-zakony-kirhgofa-prostymi-slovami.html

Закон Кирхгофа

Примеры решения задач по закону кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

https://www.youtube.com/watch?v=bR_cJDOMjxo

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда).Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи.

Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Уравнение для переменных напряжени —

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

Дано:Решение:
  • Используя первый закон Кирхгофа, запишем уравнение для цепи. Сумма токов сходящихся в узле равна нулю. Примем входящие токи положительными, а выходящие отрицательными. Тогда:
  • Используя второй закон Кирхгофа составим уравнения для первого и второго контуров цепи.
  • Направления обхода произвольны, при этом если направление тока через резистор совпадает с направлением обхода, знак «+», если иначе, то «-». С источниками ЭДС так же.
  • Для первого контура токи I1 и I3 совпадают с направлением обхода, ЭДС Е1 также совпадает, то есть берем их со знаком «+».
  • Для первого и второго контуров по второму закону Кирхгофа получаем следующие уравнения:
  • Таким образом, получаем систему из трех уравнений, являющуюся решением задачи:

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник: https://zakon-oma.ru/zakon-kirhgofa.php

Примеры решения задач по закону кирхгофа

Примеры решения задач по закону кирхгофа

Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”).

MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров).

Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.

Переменный синусоидальный ток (или напряжение) задается уравнением:

1.1 Методы анализа, основанные на законах Ома и Кирхгофа

При разомкнутом ключе К R ab = ( R 1 + R 3 )⋅ ( R 2 + R 4 ) ( R 1 + R 3 )+ ( R 2 + R 4 ) . 2. При замкнутом ключе К R ab = R 1 ⋅ R 4 R 1 + R 4 + R 2 ⋅ R 3 R 2 + R 3 .

Задача 1.3. Найти сопротивление между зажимами a и b для схемы, изображенной на рис. 1.4. Рис. 1.4 Решение. К точке 2 подходят условные «начало» сопротивления R2 и «концы» сопротивлений Rl и R3. К точке 3 подходят «начала» сопротивлений R1 и R3 и «конец» сопротивления R2.

Но тогда, все «начала» сопротивлений и все их «концы» соединяются соответственно в одни точки. А значит, по определению, имеем параллельное соединение приемников (рис. 1.5). Рис. 1.5 Таким образом, сопротивление между зажимами a и b: R ab = 1 Y ab = 1 1 R 1 + 1 R 2 + 1 R 3 .

Задача 1.4. Найти сопротивление R13, R14, R17 между различными парами вершин куба, ребра которого имеют заданное сопротивление R (рис.

1.6)

Постоянный ток

Запишем для контура №1: А теперь запишем этот же закон для контура №2: Видим, что в контуре №2 нет источников питания, поэтому в левой части (где у нас согласно второму закону Кирхгофа стоит сумма ЭДС) у нас нолик. Итак, у нас есть два уравнения, а неизвестных-то у нас три (I1, I2, I3).

А нам известно, что для нахождения трех неизвестных нужна система с тремя независимыми уравнениями. Где же взять третье недостающее уравнение? А, например, из! Согласно этому закону мы можем записать Господа, теперь полный порядок, у нас есть три уравнения и три неизвестных и нам остается только решить вот такую вот систему уравнений Подставим конкретные числа.

Все расчеты будем вести в кошерной системе СИ. Рекомендую всегда считать только в ней. Не поддавайтесь искушению подставлять куда-то миллиметры, мили, килоамперы и прочее.

Физика дома

admin.

Рубрики: . : Январь 10th, 2013 Задачи на применение закона Кирхгофа решаются в школе не часто, и не во всех классах. Работая в школе, я давала законы Кирхгофа только тем ребятам, кто готовился к олимпиадам по физике, и учащимся, которые готовились в ВУЗы. Задачи на использование законов Кирхгофа есть даже не всех сборниках задач, рекомендованных для использования в средней школе.

Ниже приведён алгоритм решения задач по данной теме.

Алгоритм не сложен. Использование данного алгоритма поможет Вам в решении задач по этой теме.

Итак, начнем. Сначала необходимо выполнить некоторые подготовительные операции.

  • перерисовать схему
  • указать направление ЭДС источников тока
  • указать предполагаемое направление токов, текущих в каждом резисторе (если итоговый ответ будет отрицательным, то направление тока было изначально выбрано не верно)
  • выбрать направление обхода для всех линейно независимых контуров

После проведения предварительных операций, приступаем собственно к решению самой задачи.

  • Записываем первый закон Кирхгофа: сумма токов, втекающих и вытекающих в данный узел, равна нулю.

Важно!

Если ток втекает в узел, то он берётся со знаком «плюс», если вытекает, то со знаком «минус».

Число уравнений второго закона Кирхгофа равно n-1, где n — число узлов в данной схеме.

(Узел — точка, в которой соединяются три проводника и более).

  • Записываем второй закон Кирхгофа для всех линейно независимых контуров: Сумма ЭДС в контуре равно сумме падений напряжений в каждом из этих контуров.

Важно! Если направление ЭДС совпадает с направлением обхода контура, то значение ЭДС берётся со знаком «плюс».

Если направление ЭДС не совпадает с направлением обхода контура, то значение ЭДС берётся со знаком «минус». Если направление тока совпадает с направлением обхода контура, то падение напряжения на данном участке берётся со знаком «плюс».

Если направление тока через какой-либо резистор не совпадает с направлением обхода в данном контуре, то падение напряжения берётся со знаком «минус». Решаем систему получившихся уравнений, относительно неизвестных величин. Чаще всего в задачах этого типа, основную сложность представляет именно решение системы получившихся уравнений.

Ниже показан пример решения задачи с использованием законов Кирхгофа.

Обратите внимание ещё раз на основные этапы решения. Они полностью соответствуют алгоритму, описанному выше. Вот условие этой задачи. Электрическая цепь состоит из двух гальванических элементов, трех резисторов и амперметра. В этой цепи R1 = 100 Ом, R2 = 50 Ом, R3 = 20 Ом, ЭДС элемента ?1 = 2 В. Амперметр регистрирует ток I3 = 50 мА, идущий в направлении, указанном стрелкой.
Определить ЭДС ?2 второго элемента. Сопротивлением амперметра и внутренним сопротивлением источников пренебречь.

Источник: http://konsalt74.ru/primery-reshenija-zadach-po-zakonu-kirhgofa-67731/

Решение задач по электротехнике (ТОЭ)

Примеры решения задач по закону кирхгофа

Срок выполнения от 1 дня
Ценаот 100 руб./задача
Предоплата50 %
Кто будет выполнять?преподаватель или аспирант

УЗНАТЬ СТОИМОСТЬ РАБОТЫТеоретические основы электротехники являются фундаментальной дисциплиной для всех электротехнических специальностей, а так же для некоторых неэлектротехнических (например, сварочное производство). На этой дисциплине основываются все спец. предметы электриков. Несмотря на большой объем дисциплины и кажущуюся сложность, она основана всего на нескольких законах. В этой статье я постараюсь рассмотреть решение основных задач, встречающихся в данном курсе.

Законы Кирхгофа. Расчет цепей постоянного тока

В электротехнике существует два основных закона, на основании которых, теоретически можно решить все цепи.
 

Первый закон Кирхгофа выглядит следующим образом.Сумма токов, входящих в узел, равна сумме токов, отходящих от узла.

Для данного рисунка имеем:I1 + I2 + I4 = I3 + I5.

Второй закон Кирхгофа.Сумма напряжений вдоль замкнутого контура равна сумме ЭДС вдоль этого же контура. Для схемы на рисунке (стрелкой обозначим направление вдоль контура, которое будем считать условно положительным).

Начиная с узла, где сходятся токи I1, I3, I4 запишем все напряжения (по закону Ома):-I1⋅R1 — I1⋅R2 – в первой ветви (знак минус означает, что ток имеет направление противоположное выбранному направлению контура).I3⋅R3 – во второй ветви (знак «плюс», направление совпадает).

Теперь запишем ЭДС:E2 — E3 (знак «минус» у E3, потому что направление ЭДС противоположно направлению контура).

В соответствии с законом Кирхгофа напряжения равны ЭДС:-I1⋅R1 — I1⋅R2 + I3⋅R3 = E2 — E3.

Как видите, все довольно просто.
 

В большинстве случаев перед студентами стоит задача рассчитать величины токов во всех ветвях, зная величины ЭДС и резисторов. Для расчета сложной, разветвленной цепи постоянного тока, например этой, найденной на просторах интернета, воспользуемся следующими действиями.
 

 

Для начала задаемся условно положительными направлениями токов в ветвях (это значит, что ток может течь и в противоположном направлении, тогда он будет иметь отрицательное значение).
 

 

Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток (в данной схеме имеем 3 таких контура). Направления контуров выбираем для удобства по часовой стрелке (хоть это и необязательно): 
 

По первому закону Кирхгофа составляем столько уравнений, чтоб охватить все неизвестные токи (в данной схеме для любых трех узлов): 
 

Итого, имеем систему из 6 уравнений. Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:
 

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”).

MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров).

Но, во-первых, функция “Given” не работает с комплексными числами (об этом позже), во-вторых, не всегда есть под рукой компьютер или условие задачи поставлено так, что требуется решить схему другим методом.

Данный метод решения задач называется методом непосредственного применения законов Кирхгофа. Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.
 

Переменный ток

Переменный синусоидальный ток (или напряжение) задается уравнением:

Здесь Im – амплитуда тока.ω – угловая частота, находится как ω = 2⋅π⋅f (обычно в условии задается либо f, либо ω)φ – фаза.

Обычно в задачах условия задают либо в таком формате, либо в действующем значении. Амплитудное больше действующего всегда в √2 раз. Если в условии задано просто значение (например, E1 = 220 В), то это значит, что дано действующее значение.
 

Если же в условии дано «250⋅sin(314t – 15°), В», то его нужно перевести в действующее комплексное значение.
 

Про комплексные числа можно подробнее прочитать на нашем сайте.
 

Для перевода величин к действующим необходимо: 

,

 

Точечка над I означает, что это комплекс.
 

Чтобы не путать с током, в электротехнике комплексная единица обозначается буквой «j».
 

Для заданного напряжения имеем: 
 

В решении задач обычно оперируют действующими значениями.
 

В переменном токе вводятся новые элементы:

Катушка индуктивностиL – [Гн]
Конденсатор [емкость]С – [Ф]

Их сопротивления (реактивные сопротивления) находятся как:

(сопротивление конденсатора — отрицательное)

Например, имеем схему, она подключена на напряжение 200 В, имеющего частоту 100 Гц. Требуется найти ток. Параметры элементов заданы:
 

Чтоб найти ток, необходимо напряжение разделить на сопротивление (из закона Ома). Здесь основная задача – найти сопротивление. Комплексное сопротивление находится как:

 

Напряжение делим на сопротивление и получаем ток.
 

Все эти действия удобно проводить в MathCad. Комплексная единица ставится «1i» или «1j». Если нет возможности, то:

  1. Деление удобно производить в показательной форме.
  2. Сложение и вычитание – в алгебраической.
  3. Умножение – в любой (оба числа в одинаковой форме).

Также, скажем пару слов о мощности. Мощность есть произведение тока и напряжения для цепей постоянного тока. Для цепей переменного тока вводится еще один параметр – угол сдвига фаз (вернее его косинус) между напряжением и током.
 

Предположим, для предыдущей цепи нашли ток и напряжение (в комплексной форме).

 

Также мощность можно найти и по другой формуле:

 

В этой формуле — сопряженный комплекс тока. Сопряженный – значит, что его мнимая часть (та, что с j) меняет свой знак на противоположный (минус/плюс).
Re – означает действительная часть (та, что без j).
 

Это были формулы для активной (полезной) мощности. В цепях переменного тока существует так же и реактивная мощность (генерируется конденсаторами, потребляется – катушками).
 

Реактивная мощность цепи:

Im – мнимая часть комплексного числа (та, что с j).
 

Зная реактивную и активную мощность можно подсчитать полную мощность цепи:

 

Для упрощенного расчета цепей постоянного и переменного тока, содержащих большое число ветвей, пользуются одним из упрощенных методов анализа цепей. Рассмотрим подробнее метод контурных токов.
 

Метод контурных токов (МКТ)

Данный метод подходит для решения схем, содержащих больше узлов, чем независимых контуров (например, схема из раздела про постоянный ток). Принцип решения состоит в следующем:

  1. Выделяем независимые контуры (их должно быть столько, чтоб охватить все неизвестные токи). Контурные токи обычно называют I11, I22 и т.д.
  2. Определяем контурные сопротивления (сумма сопротивлений вдоль контура):

     

    Далее определяются общие контурные сопротивления (те, что относятся одновременно к 2 контурам), они берутся со знаком минус:

     

    Также определяем контурные ЭДС (алгебраическая сумма ЭДС вдоль контура):

  3. Далее составляются уравнения (если имеем 4 контура, то система будет из 4 уравнений с 4 контурными токами в каждом, если из 5, то 5 и т.д.):

     

    Данная система легко решается методом Крамера. Также в сети есть много онлайн-калькуляторов.

  4. Зная контурные токи, можно найти токи в ветвях:
    I1 = I11 (в первой ветви протекает только контурный ток I11)
    I2 = I33 – I22 (направления контурного тока I33 совпадает с направлением I2, направление I22 – противоположно, поэтому берем со знаком минус)
    По аналогии находим остальные токи.

Данный метод, как и другие (например, метод узловых потенциалов, эквивалентного генератора, наложения) пригоден для цепей как постоянного, так и переменного тока. При расчете цепей переменного тока сопротивления элементов приводятся к комплексной форме записи. Система уравнений решается также в комплексной форме.
 

Литература

Из литературы можно порекомендовать Бессонова Л.А. «Теоретические основы электротехники: Электрические цепи». Также много информации в интернете на сайтах, посвященных электротехнике. 

Решение электротехники на заказ

И помните, что наши решатели всегда готовы помочь Вам с ТОЭ. Подробнее.

Источник: https://Reshatel.org/reshenie-zadach/reshenie-zadach-po-toe/

Законы Кирхгофа » Решение ТОЭ

Примеры решения задач по закону кирхгофа

Задание 1 Линейные электрические цепи постоянного тока

ОГУ

Вариант 9

Сформулировать уравнения по законам Кирхгофа в общем виде. Определить токи ветвей методом контурных токов. Составить баланс мощностей. Нарисовать диаграмму распределения потенциала для внешнего контура электрической цепи.

Задачи для самостоятельного решения

В электрической цепи с двумя источниками синусоидальной ЭДС одна из катушек имеет индуктивные связи с двумя другими катушками.

https://www.youtube.com/watch?v=LzqkLKOyid8

Требуется составить систему уравнений по законам Кирхгофа для определения комплексных действующих значений токов ветвей.

Расчет сложной цепи постоянного тока на основании законов Кирхгофа, методом контурных токов, методом наложения, методом эквивалентного генератора. Построение потенциальной диаграммы

Для электрической цепи (рис. 0) выполнить следующее:

1) составить на основании законов Кирхгофа систему уравнений для определения токов во всех ветвях схемы;

2) определить токи во всех ветвях схемы, используя метод контурных токов;

3) определить токи во всех ветвях схемы на основании метода наложения;

4) составить баланс мощностей для заданной схемы;

5) результаты расчетов токов по пунктам 2 и 3 представить в виде таблицы и сравнить:

6) определить ток во второй ветви методом эквивалентного генератора;

7) построить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС.

А.В. Бубнов, В.Л. Федоров. Расчетно-графическая работа № 2 Расчет электрических цепей синусоидального тока, НвГУ, Нижневартовск 2011

Для электрической схемы, соответствующей номеру варианта, выполнить следующее:

1. На основании законов Кирхгофа составить в общем виде систему уравнений для расчета токов во всех ветвях цепи, записав ее в двух формах:

а) дифференциальной;

б) символической.

2. Определить комплексы действующих значений токов во всех ветвях, воспользовавшись одним из методов расчета линейных электрических цепей.

3. По результатам расчета в п.2 произвести проверку выполненных расчетов при помощи законов Кирхгофа.

4. Определить комплексную мощность источника питания и проверить баланс мощностей.

5. Определить показания ваттметра.

6. Используя данные расчетов, записать мгновенные значения токов и напряжений.

7. Построить топографическую диаграмму, совмещенную с векторной диаграммой токов. При этом потенциал точки а, указанной на схеме, принять равным нулю.

Задания для самостоятельной работы обучающихся

Задача 1 Расчет электрической цепи постоянного тока

1. Для электрической схемы, изображенной на рис.0, по заданным сопротивлениям и ЭДС найти все токи способами:

а) используя законы Кирхгофа;

б) методом контурных токов;

в) методом узловых напряжений;

г) определить ток в резисторе R6 методом эквивалентного генератора.

Свести результаты расчетов в одну таблицу.

2. Определить показание вольтметра.

3. Составить баланс мощностей.

Скачать расчет электрической цепи постоянного тока

zadacha1-raschet-cepi-postoyannogo-toka.pdf [741,77 Kb] (cкачиваний: 534)

Задача 1.10 Определить ток в ветви с сопротивлением R3, используя законы Кирхгофа, если: E1 = 54 В, E2 = 162 В, R1 = R2 = 9 Ом, R3 = 40 Ом, внутренние соапотивления источников ЭДС r1 = r2 = 1 Ом.

Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985

Задача 1 Расчет электрической цепи постоянного тока

Для электрической схемы, изображенной на рисунке, по заданным сопротивлениям и ЭДС выполнить следующее:

1) составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;

2) найти все токи, пользуясь методом контурных токов;

3) проверить правильность решения, применив метод узлового напряжения. Предварительно упростить схему, заменив треугольник сопротивления R4, R5 и R6 эквивалентной звездой. Начертить расчетную схему с эквивалентной звездой и показать на ней токи;

4) определить ток в резисторе R6 методом эквивалентного генератора;

5) определить показание вольтметра и составить баланс мощностей для заданной схемы;

6) построить в масштабе потенциальную диаграмму для внешнего контура.

Скачать решение Задачи 1 Расчет электрической цепи постоянного тока reshenie-zadachi-raschet-elektricheskoy-cepi-postoyannogo-toka.pdf [777,31 Kb] (cкачиваний: 1096)

РАСЧЕТ ОДНОФАЗНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА СИМВОЛИЧЕСКИМ МЕТОДОМ

Заданы параметры цепи и напряжение на одном из участков цепи, включенном между точками а-б.

Требуется:

  1. Определить токи и напряжения на всех участках цепи символическим методом.
  2. Записать выражения для мгновенных значений всех токов и напряжений.
  3. Сделать проверку правильности решения по законам Кирхгофа.
  4. Составить баланс активных и реактивных мощностей.
  5. Построить волновые диаграммы напряжения, тока и мощности на входе цепи.
  6. Построить векторную диаграмму токов и напряжений.

Скачать решение варианта 8 РАСЧЕТ ОДНОФАЗНОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА СИМВОЛИЧЕСКИМ МЕТОДОМ

rgr2-raschet-odnofaznoy-cepi-sinusoidalnogo-toka-simvolicheskim-metodom-var8.pdf [553,43 Kb] (cкачиваний: 404)

МАИ (НИУ) Кафедра 405, ОТЦ, Часть I, Билет № 4, Законы Кирхгофа

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра 405, Дисциплина ОТЦ, Часть I

Билет № 4

Законы Кирхгофа для напряжения и тока. Для заданной цепи составить уравнения по законам Кирхгофа и найти токи ветвей.

Источник: http://xn----etb8afbn2f.xn--p1ai/tags/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B+%D0%9A%D0%B8%D1%80%D1%85%D0%B3%D0%BE%D1%84%D0%B0/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.