Сумма и вычитание степеней

Содержание

Степени при сложении чисел

Сумма и вычитание степеней

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

Примеры.

  • Упростить выражение. b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
  • Представить в виде степени. 615 · 36 = 615 · 62 = 615 · 62 = 617
  • Представить в виде степени. (0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.

Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».

Примеры.

  • Записать частное в виде степени (2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
  • Вычислить.113 · 4 2112 · 4= 113 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней. 38 : t = 34t = 38 : 34t = 38 − 4t = 34Ответ: t = 34 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

  • Пример. Упростить выражение. 45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
  • Пример. Найти значение выражения, используя свойства степени.512 · 4=512 · 4=29 · 22=29 + 2== 211 − 5 = 2 6 = 64

Важно!

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4

Будьте внимательны!

Свойство № 3
Возведение степени в степень

Запомните!

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
(an)m = an · m, где «a» — любое число, а «m», «n» — любые натуральные числа.

  • Пример.(a4)6 = a4 · 6 = a24
  • Пример. Представить 320 в виде степени с основанием 32.По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Свойства 4
Степень произведения

Запомните!

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
(a · b)n = an · bn, где «a», «b» — любые рациональные числа; «n» — любое натуральное число.

  • Пример 1.(6 · a2 · b3 · c )2 = 62 · a2 · 2 · b3 · 2 · с 1 · 2 = 36 a4 · b6 · с 2
  • Пример 2.(−x2 · y)6 = ( (−1)6 · x2 · 6 · y1 · 6) = x12 · y6

Важно!

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(an · bn)= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.24 · 54 = (2 · 5)4 = 104 = 10 000
  • Пример. Вычислить.0,516 · 216 = (0,5 · 2)16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 45 · 32 = 43 · 42 · 32 = 43 · (4 · 3)2 = 64 · 122 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

421 · (−0,25)20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25))20 = 4 · (−1)20 = 4 · 1 = 4

Свойства 5
Степень частного (дроби)

Запомните!

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
(a : b)n = an : bn, где «a», «b» — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней. (5 : 3)12 = 512 : 312

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 — bn и h5 -d4 есть a3 — bn + h5 — d4.

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a2 и 3a2 равна 5a2.

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a2 и a3 есть сумма a2 + a3.

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a43h2b65(a — h)6
Вычитаем-6a44h2b62(a — h)6
Результат8a4-h2b63(a — h)6

Или:2a4 — (-6a4) = 8a43h2b6 — 4h2b6 = -h2b6

5(a — h)6 — 2(a — h)6 = 3(a — h)6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a3 на b2 равен a3b2 или aaabb.

Первый множительx-33a6y2a2b3y2
Второй множительam-2xa3b2y
Результатamx-3-6a6xy2a2b3y2a3b2y

Или:x-3 ⋅ am = amx-33a6y2 ⋅ (-2x) = -6a6xy2

a2b3y2 ⋅ a3b2y = a2b3y2a3b2y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a2.a3 = aa.aaa = aaaaa = a5.

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, an.am = am+n.

Для an, a берётся как множитель столько раз, сколько равна степень n;

И am, берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a2.a6 = a2+6 = a8. И x3.x2.x = x3+2+1 = x6.

Первый множитель4anb2y3(b + h — y)n
Второй множитель2anb4y(b + h — y)
Результат8a2nb6y4(b + h — y)n+1

Или:4an ⋅ 2an = 8a2nb2y3 ⋅ b4y = b6y4

(b + h — y)n ⋅ (b + h — y) = (b + h — y)n+1

Умножьте (x3 + x2y + xy2 + y3) ⋅ (x — y).Ответ: x4 — y4.

Умножьте (x3 + x — 5) ⋅ (2×3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a-2.a-3 = a-5. Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y-n.y-m = y-n-m.

3. a-n.am = am-n.

Если a + b умножаются на a — b, результат будет равен a2 — b2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a2 — y2. (a2 — y2)⋅(a2 + y2) = a4 — y4.

(a4 — y4)⋅(a4 + y4) = a8 — y8.

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a3b2 делённое на b2, равно a3.

Делимое9a3y4a2b + 3a2d⋅(a — h + y)3
Делитель-3a3a2(a — h + y)3
Результат-3y4b + 3d

Или:$\frac{9a3y4}{-3a3} = -3y4$$\frac{a2b + 3a2}{a2} = \frac{a2(b+3)}{a2} = b + 3$

$\frac{d\cdot (a — h + y)3}{(a — h + y)3} = d$

Запись a5, делённого на a3, выглядит как $\frac{a5}{a3}$. Но это равно a2. В ряде чисел a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.

любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y3:y2 = y3-2 = y1. То есть, $\frac{yyy}{yy} = y$.

И an+1:a = an+1-1 = an. То есть $\frac{aan}{a} = an$.

Делимоеy2m8an+m12(b + y)n
Делительym4am3(b + y)3
Результатym2an4(b +y)n-3

Или:y2m : ym = ym8an+m : 4am = 2an

12(b + y)n : 3(b + y)3 = 4(b +y)n-3

Правило также справедливо и для чисел с отрицательными значениями степеней. Результат деления a-5 на a-3, равен a-2.

Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h2:h-1 = h2+1 = h3 или $h2:\frac{1}{h} = h2.\frac{h}{1} = h3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a4}{3a2}$ Ответ: $\frac{5a2}{3}$.

2. Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю. a2.a-4 есть a-2 первый числитель. a3.a-3 есть a0 = 1, второй числитель. a3.a-4 есть a-1, общий числитель.

После упрощения: a-2/a-1 и 1/a-1.

4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.

5. Умножьте (a3 + b)/b4 на (a — b)/3.

6. Умножьте (a5 + 1)/x2 на (b2 — 1)/(x + a).

7. Умножьте b4/a-2 на h-3/x и an/y-3.

8. Разделите a4/y3 на a3/y2. Ответ: a/y.

9. Разделите (h3 — 1)/d4 на (dn + 1)/h.

Деление степеней с одинаковыми основаниями

Тема: Степень с натуральным показателем и ее свойства

Урок: Деление степеней с одинаковыми основаниями (формула )

1. Напоминание основных определений и теоремы 1

Основные определения:

Здесь a — основание степени,

n — показатель степени,

— n-ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n и k, таких, что n > k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

2. Разъясняющие задачи

Разъясняющие задачи

1)

2)

Вывод: частные случаи подтвердили правильность теоремы №2. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k таких, что n > k.

3. Доказательство теоремы 2 двумя способами

Доказательство теоремы 2.

Первый способ.

Воспользуемся теоремой 1. Применим ее для степеней и .

. Разделим обе части на .

Второй способ.

Доказательство основано на определении степени

Сократим k сомножителей.

То есть для любого а и любых натуральных n и k таких, что n > k.

4. Решение примеров на вычисление и упрощение с помощью теоремы 2

Пример 1: Вычислить.

Для решения следующих примеров воспользуемся теоремой 2.

а)

б)

Пример 2: Упростить.

а)

б)

в)

Пример 3: Решить уравнение.

а)

б)

5. Решение примеров на вычисление на совместное применение теорем 1 и 2

Пример 4: Вычислить:

Для решения следующих примеров будем пользоваться обеими теоремами.

а) =6 или быстрее =6

б) ==81 или быстрее =81

в) == или быстрее

6. Решение примеров на упрощение на совместное применение теорем 1 и 2

Пример 5: Упростить:

а) = или быстрее

б)

в) или быстрее

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Источник: https://glazeandcoffee.ru/stepeni-pri-slozhenii-chisel/

Сложение, вычитание, умножение, и деление степеней

Сумма и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 — bn и h5 -d4 есть a3 — bn + h5 — d4.

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a2 и 3a2 равна 5a2.

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степениодинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a2 и a3 есть сумма a2 + a3.

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a43h2b65(a — h)6
Вычитаем-6a44h2b62(a — h)6
Результат8a4-h2b63(a — h)6

Или:
2a4 — (-6a4) = 8a4
3h2b6 — 4h2b6 = -h2b6
5(a — h)6 — 2(a — h)6 = 3(a — h)6

Формулы сокращенного умножения:сумма степеней и разность степеней

Сумма и вычитание степеней

Справочник по математикеАлгебраФормулы сокращенного умножения

      Формулы сокращенного умножения включают в себя следующие группы формул:

      Группа формул «Сумма нечетных степеней» приведена в Таблице 3.

      Таблица 3. – Сумма нечетных степеней

Название формулыФормула
Сумма кубовx3 + y3 = (x + y) (x2 – xy + y2)
Сумма пятыхстепенейx5 + y5 = (x + y) (x4 – x3y + x2y2 – xy3 + y4)
Сумма седьмыхстепенейx7 + y7 = (x + y) (x6 – x5y + x4y2 – x3y3 + x2y4 – xy5 + y6)
Сумма степенейпорядка  2n + 1  x2n + 1 + y2n + 1 = (x + y) (x2n – x2n – 1y + x2n – 2 y2 – …– xy2n – 1 + y2n)
Сумма кубовx3 + y3 == (x + y) (x2 – xy + y2)
Сумма пятых степенейx5 + y5 == (x + y) (x4 – x3y ++ x2y2 – xy3 + y4)
Сумма седьмых степенейx7 + y7 == (x + y) (x6 – x5y ++ x4y2 – x3y3 ++ x2y4 – xy5 + y6)
Сумма степеней порядка  2n + 1  

x2n + 1 + y2n + 1 == (x + y) (x2n –– x2n – 1y ++ x2n – 2 y2 –– …– xy2n – 1 + y2n)

Разность нечетных степеней

      Если в формулах из Таблицы 3 заменить  y  на  – y ,  то мы получим группу формул «Разность нечетных степеней» (Таблица 4.):

      Таблица 4. – Разность нечетных степеней

Название формулыФормула
Разность кубовx3– y3 = (x – y) (x2 + xy + y2)
Разность пятыхстепенейx5– y5 = (x – y) (x4 + x3y + x2y2 + xy3 + y4)
Разность седьмыхстепенейx7– y7 = (x – y) (x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6)
Разность степенейпорядка  2n + 1x2n + 1– y2n + 1 = (x – y) (x2n + x2n – 1y + x2n – 2 y2 + …+ xy2n – 1 + y2n)
Разность кубовx3– y3 == (x – y) (x2 + xy + y2)
Разность пятых степенейx5– y5 == (x – y) (x4 + x3y ++ x2y2 + xy3 + y4)
Разность седьмыхстепенейx7– y7 == (x – y) (x6 + x5y ++ x4y2 + x3y3 ++ x2y4 + xy5 + y6)
Разность степеней порядка  2n + 1

x2n + 1– y2n + 1 == (x – y) (x2n ++ x2n – 1y ++ x2n – 2 y2 ++ …+ xy2n – 1 + y2n)

Разность четных степеней

      Группа формул «Разность четных степеней» приведена в Таблице 5.

      Таблица 5. – Разность четных степеней

Название формулыФормула
Разность квадратовx2– y2 = (x + y) (x – y)
Разность четвертыхстепеней
x4– y4 == (x + y) (x3 – x2y + xy2 –y3) == (x + y) (x – y) (x2 + y2)
Разность шестыхстепеней
x6– y6 == (x + y) (x5 – x4y + x3y2 – x2y3 + xy4 –y5) == (x + y) (x – y) (x2 – xy + y2) (x2 + xy + y2)
Разность восьмыхстепеней
x8– y8 == (x + y) (x7 – x6y + x5y2 – x4y3 + x3y4 – x2y5 + xy6 –y7) == (x + y) (x – y) (x2 + y2) (x4 + y4)
Разность степенейпорядка  2nx2n– y2n = (x + y) (x2n – 1 – x2n – 2 y + x2n – 3 y2 – …+ xy2n – 2 – y2n – 1) , x2n– y2n = (x – y) (x2n – 1 + x2n – 2 y + x2n – 3 y2 + …+ xy2n – 2 + y2n – 1)
Разность квадратовx2– y2 = (x + y) (x – y)
Разность четвертых степеней

x4– y4 == (x + y) (x3 – x2y ++ xy2 –y3) == (x + y) (x – y) (x2 ++ y2)
Разность шестых степеней

x6– y6 == (x + y) (x5 – x4y ++ x3y2 –– x2y3 ++ xy4 –y5) == (x + y) (x – y) (x2 –– xy + y2) (x2 ++ xy + y2)
Разность восьмых степеней

x8– y8 == (x + y) (x7 – x6y ++ x5y2 – x4y3 ++ x3y4 –– x2y5 + xy6 –y7) == (x + y) (x – y) (x2 ++ y2) (x4 + y4)
Разность степеней порядка  2n

x2n– y2n == (x + y) (x2n – 1 –– x2n – 2 y ++ x2n – 3 y2 –– …+ xy2n – 2 –– y2n – 1)
* * *
x2n– y2n == (x – y) (x2n – 1 ++ x2n – 2 y ++ x2n – 3 y2 ++ …+ xy2n – 2 ++ y2n – 1)

      Замечание. Оба разложения на множители двучлена:

x2n– y2n ,

приведенные в последней строке Таблицы 5, можно продолжить и далее, по аналогии с тем, как это сделано в других строках таблицы.

      Другие формулы сокращенного умножения можно посмотреть в разделе «Формулы сокращенного умножения: степень суммы, степень разности» нашего справочника.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник: https://www.resolventa.ru/spr/algebra/brief2.htm

Степень — свойства, правила, действия и формулы

Сумма и вычитание степеней

1001student.ru > Математика > Степень — свойства, правила, действия и формулы

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

  • Онлайн-калькулятор возведения в степень
  • Что такое степень числа
  • Таблица степеней от 1 до 10
  • Свойства степеней
  • Степень с отрицательным показателем
  • Степень с натуральным показателем
  • Дробная степень
  • Степень с иррациональным показателем
  • Заключение

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом:

an = a * a * a * …an.

Причем, левая часть уравнения будет читаться, как a в степ. n.

Например:

  • 23 = 2 в третьей степ. = 2 * 2 * 2 = 8;
  • 42 = 4 в степ. два = 4 * 4 = 16;
  • 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625;
  • 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000;
  • 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло2-ая ст-нь3-я ст-нь
111
248
3927
41664
525125
636216
749343
864512
981279
101001000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • an * am = (a)(n+m);
  • an : am = (a)(n-m);
  • (ab ) m=(a)(b*m).

Проверим на примерах:

23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично: 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.

(23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 33 + 24 = 27 + 16 = 43;
  • 52 – 32 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 — 3)2 = 22 = 4.

А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.

Как производить вычисления в более сложных случаях? Порядок тот же:

  • при наличии скобок – начинать нужно с них;
  • затем возведение в степень;
  • потом выполнять действия умножения, деления;
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: am/n.
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Эти правила важны в отдельных случаях, их рассмотрим подробней ниже.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается:

A(-n) = 1 / An, 5(-2) = 1 / 52 = 1 / 25.

И наоборот:

1 / A(-n) = An, 1 / 2(-3) = 23 = 8.

А если дробь?

(A / B)(-n) = (B / A)n, (3 / 5)(-2) = (5 / 3)2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

A0 = 1, 10 = 1; 20 = 1; 3.150 = 1; (-4)0 = 1…и т. д.

A1 = A, 11 = 1; 21 = 2; 31 = 3…и т. д.

Кроме того, если (-a)2n+2, n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот.

Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: Am/n. Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице;
  • А˃1.

Аr1 ˂ Аα ˂ Аr2, r1 ˂ r2 – рациональные числа;

В этом случае наоборот: Аr2 ˂ Аα ˂ Аr1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

r1 – в этом случае равно 3;

r2 – будет равно 4.

Тогда, при А = 1, 1π = 1.

А = 2, то 23 ˂ 2π ˂ 24, 8 ˂ 2π ˂ 16.

А = 1/2, то (½)4 ˂ (½)π ˂ (½)3, 1/16 ˂ (½)π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги — для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.

Источник: https://1001student.ru/matematika/stepen.html

Действия со степенями: правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого

Сумма и вычитание степеней

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Степень, свойства и действия со степенями, сложение, умножение, деление отрицательных степеней, степень с натуральным показателем, правила и формулы

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Действия с одночленами: умножение, сложение и вычитание степеней

Сумма и вычитание степеней

В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются.

Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем.

Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.

Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.

Правила сложения и вычитания одночленов

Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).

Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.

Пример 1

Условие: выполните сложение одночленов −3·x  и 2,72·x3·y5·z.

Решение

Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:

(−3·x)+(2,72·x3·y5·z)

Когда мы выполним раскрытие скобок, получится -3·x+2,72·x3·y5·z. Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.

Ответ: (−3·x)+(2,72·x3·y5·z)=−3·x+2,72·x3·y5·z.

Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.

Пример 2

Условие: проведите в правильном порядке указанные действия с многочленами

3·a2-(-4·a·c)+a2-7·a2+49-223·a·c

Решение

Начнем с раскрытия скобок.

3·a2+4·a·c+a2-7·a2+49-223·a·c

Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:

3·a2+4·a·c+a2-7·a2+49-223·a·c==(3·a2+a2-7·a2)+4·a·c-223·a·c+49==-3·a2+113·a·c+49

У нас получился многочлен, который и будет результатом данного действия.

Ответ: 3·a2-(-4·a·c)+a2-7·a2+49-223·a·c=-3·a2+113·a·c+49

В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.

Правила умножения одночленов

Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.

Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:

  1. Правильно записать произведение.
  2. Раскрыть скобки в полученном выражении.
  3. Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
  4. Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.

Посмотрим, как это делается на практике.

Пример 3

Условие: выполните умножение одночленов 2·x4·y·z  и -716·t2·x2·z11 .

Решение

Начнем с составления произведения.

2·x4·y·z·-716·t2·x2·z11

Раскрываем в нем скобки и получаем следующее:

2·x4·y·z·-716·t2·x2·z11

Далее нам нужно объединить числовые множители в одну группу, а потом сгруппировать множители с одинаковыми переменными:

2·-716·t2·x4·x2·y·z3·z11

Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:

2·-716·t2·x4·x2·y·z3·z11=-78·t2·x4+2·y·z3+11==-78·t2·x6·y·z14

Ответ: 2·x4·y·z·-716·t2·x2·z11=-78·t2·x6·y·z14 .

Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.

Правила возведения одночлена в степень

Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.

Пример 4

Условие: выполните возведение одночлена −2·a·b4  в степень 3.

Решение

Мы можем заменить возведение в степень на умножение 3-х одночленов −2·a·b4. Запишем и получим нужный ответ:

 (−2·a·b4)3=(−2·a·b4)·(−2·a·b4)·(−2·a·b4)==((−2)·(−2)·(−2))·(a· a· a)·(b4·b4·b4)=−8·a3·b12

Ответ: (−2·a·b4)3=−8·a3·b12.

А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.

Решим задачу, которую мы привели выше, указанным способом.

Пример 5

Условие: выполните возведение −2·a·b4 в третью степень.

Решение

Зная свойство степени в степени, мы можем перейти к выражению следующего вида:

(−2·a·b4)3=(−2)3·a3·(b4)3.

После этого мы возводим в степень -2 и применяем свойство степени в степени:

(−2)3·(a)3·(b4)3=−8·a3·b4·3=−8·a3·b12.

Ответ: −2·a·b4=−8·a3·b12.

Возведению одночлена в степень мы также посвятили отдельную статью.

Правила деления одночленов

Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.

Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.

Пример 6

Условие: выполните деление одночлена −9·x4·y3·z7  на −6·p3·t5·x2·y2.

Решение

Начнем с записи одночленов в форме дроби.

-9·x4·y3·z7-6·p3·t5·x2·y2

Эту дробь можно сократить. После выполнения этого действия получим:

3·x2·y·z72·p3·t5

Ответ: -9·x4·y3·z7-6·p3·t5·x2·y2=3·x2·y·z72·p3·t5.

Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/dejstvija-s-odnochlenami/

Свойства степени

Сумма и вычитание степеней
Что такое степень числа Свойства степени Возведение в степень дроби

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.