Закон сохранения энергии при наличии поступательного и вращательного движения

Закон сохранения энергии при наличии поступательного и вращательного движения

Закон сохранения энергии при наличии поступательного и вращательного движения

воздействий и зависит от гл. момента Me0 внеш. сил; эта зависимость определяется ур-нием dK0/dt = Me0 (ур-ние моментов).

В отличие от случая движения одной точки, ур-ние моментов для системы не является следствием ур-ния кол-в движения, и оба эти ур-ния могут применяться для изучения движения системы одновременно.

С помощью одного только ур-ния моментов движение системы (тела) может быть полностью определено лишь в случае чисто вращат.

движения (вокруг неподвижной оси или точки). Если гл. момент внеш. сил относительно к—н. центра или оси равен нулю, то главный M.

к. д. системы относительно этого центра или оси остаётся величиной постоянной, т. е. имеет место закон сохранения M.

к. д. (см. Сохранения законы ).Понятие о главном M.

к. д. широко используется в динамике твёрдого тела, особенно в теории гироскопа.

M. к. д., так же как и кол-вом движения, обладают все формы материи, в т.

ч. эл—магн., гравитац.

Закон сохранения вращательного момента

Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты.

Обычно начальный вращательный момент придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение – балерина выпрямляется.

Теперь все точки тела находятся ближе к оси вращения, и сохранение вращательного момента приводит к резкому увеличению скорости.

Поделитесь на страничке Из книги Характер Физических Законов автора Фейнман Ричард Филлипс Лекция 3.

Великие законы сохранения Изучая физику, вы обнаруживаете, что существует огромное количество сложных и очень точных законов — законы гравитации, электричества и магнетизма,законы ядерных взаимодействий и т.д.

Лекция 8 законы сохранения при вращательном движении

Выясним, какая величина определяет изменение момента импульса системы тел. Продифференцируем (3) по-времени:

(4) Из Формулы (2) ясно, что

равна моменту всех сил, действующих на i-ю часть системы тел.

Представим момент в виде векторной суммы моментов внутренних и внешних сил:

(5) где

— суммарный момент всех внутренних сил относительно данной оси,

— суммарный момент всех внешних сил относительно той же оси.Суммарный момент всех внутренних сил относительно любой точки равен нулю, так как внутренние силы — это взаимодействия между частицами системы. По третьему закону

Поступательное и вращательное движение

Она тем больше (

), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.

4)Угловой путь Угловой путь – это элементарный угол поворота:

,

. Радиан – это угол, который вырезает на окружности дугу, равную радиусу.

Направление углового пути определяется правилом правого винта: если головку винта вращать в направлении движения точки по окружности, то поступательное движение острия винта укажет направление

.

Угловая скорость (средняя и мгновенная) Средняя угловая скорость – это физическая величина, численно равная отношению углового

Классический гармонический осциллятор. Дифференциальное уравнение незатухающих гармонических колебаний и его решение. Графический вид решения (график зависимости смещения от времени) .

3) Дифференциальное уравнение затухающих колебаний в вязких средах и его решение. Графический вид решения (график зависимости смещения от времени).

Характеристики затухания. 4) Пружинный, математический маятники.

Масса, импульс, энергия. Взаимосвязь массы и энергии. Электромагнетизм Электростатическое поле в вакууме.

Напряженность. 1) Положительные и отрицательные заряды, их взаимодействие.

Вопрос 6. Закон сохранения механической энергии

Вопрос 5.

Плоские движения твердого тела. При плоском движении каждая точка тела в процессе движения остается все время в одной и той же плоскости. В этом случае ось вращения не меняет своего положения по отношению к телу, и уравнения упрощаются, т.е.

для поступательного движения достаточно двух осей проекций х и у,а для вращательного — одной оси z . При этом говорят, что «ось вращения неподвижна» (по отношению к телу). Для «неподвижной» оси вращения момент импульса можно записать в скалярном виде, учитывая связь линейной и угловой скоростей

:

.

Рассмотрим скатывание сплошного цилиндра с наклонной плоскости.

II закон Ньютона в векторном виде для поступательного и вращательного движений.

Движение плоское. II закон

Закон сохранения энергии вращательного движения

В полом цилиндре основная масса материальных точек сосредоточена на краю цилиндра (на расстоянии радиуса от его центра), в то время, как в цельном цилиндре материальные точки распределены равномерно по всему радиусу, т.е.

, при одинаковой угловой скорости в полом цилиндре количество материальных точек, обладающих высокой тангенциальной скоростью, будет больше, чем в цельном, поэтому, полому цилиндру понадобится потратить больше энергии на свой разгон.

Если вам понравился сайт, будем благодарны за его популяризацию � Расскажите о нас друзьям на форуме, в блоге, сообществе. 3. Сопоставление поступательного и вращательного движений.

Е. Законы сохранения при вращательном движении

14.

Дифференциальное уравнение вынужденных колебаний mx// = — kx — rx/ + F0.cos(wt), или x// + 2dx/ + w02x = f0.cos(wt).

где F0.cos(wt) — внешняя периодическая сила, действующая на колеблющуюся точку и вызывающая вынужденные колебания; F0- ее амплитудное значение; f0 = F0/m. Вариант 1. Кинематика. А.1. Пуля пущена с начальной скоростью vпод углом aк горизонту.

Определить максимальную высоту подъема, дальность полета и радиус кривизны траектории пули в ее наивысшей точке. Динамика. Б.1.Через блок массой Мперекинута невесомая, нерастяжимая нить, к концам которой подвешены грузы с массами m1и m2 . Определить ускорения, с которыми будут двигаться грузы, если их предоставить самим себе, трением в оси блока пренебречь.

Законы сохранения при прямолинейном движении. В.1.Тело массой m1движется навстречу второму телу массой m2 и абсолютно не упруго соударяется с ним. Скорости тел непосредственно перед ударом были v1 и v2 .

2. Динамика поступательного и вращательного движения

Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему:

.Второй закон Ньютона: Скорость изменения импульса тела равна действующей на него силе:

. В частном случае (при постоянной массе): ускорение, приобретаемое телом относительно инер­ци­аль­ной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

.

,где

— сила, действующая на первую точку со стороны второй,

Методические указания по решению задач

К неконсервативным механическим силам относится сила трения и сила тяги. Кинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).

Кинетическая энергия поступательного движения

. Кинетическая энергия вращательного движения

.При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:

.

Свойства кинетической энергии: 1.

Кинетическая энергия является конечной, однозначной, непрерывной функцией механического состояния системы. 2. Кинетическая энергия не отрицательна: ЕК 0. 3.

Закон сохранения механической энергии

Если бы и ось были противоположно направлены, то

.

Основной закон динамики поступательного движения. Основной закон динамики поступательного движения твердого тела выводится из законов Ньютона для материальной точки (см. стр. 10) и имеет вид:

, (3) где – сумма внешних сил, действующих на тело (результирующая сила),

– масса тела,

– ускорение центра масс тела (в инерциальной системе отсчета).

Основной закон динамики вращательного движения. Основной закон динамики вращательного движения твердого тела вокруг неподвижной (в инерциальной системе отсчета) оси имеет вид:

Кинематика поступательного движения

Типы сил. Упругие силы. Потенциальная энергия упругодеформированного тела В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами.

Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу.

В результате их действия происходят процессы внутри ядра.

-Упругие Силы Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел.

Если после прекращения действия внешних сил восстанавливаются прежние форма и размеры тела, то деформация называется упругой.

Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, называемого пределом упругости. При превышении этого предела деформация становится пластичной, или неупругой, т.е.

первоначальные размеры и форма тела полностью не восстанавливаются.

— Деформированное упругое тело(например, растянутая или сжатая пружина) способно, возвращаясь в недеформированное состояние, совершить работу над соприкасающимися с ним телами. Следовательно, упруго деформированное тело обладает потенциальной энергией.

Источник: http://konsalt74.ru/zakon-sohranenija-ehnergii-pri-nalichii-postupatelnogo-i-vraschatelnogo-dvizhenija-67731/

Вращение твердого тела

Закон сохранения энергии при наличии поступательного и вращательного движения

Для кинематического описания процесса вращения твердого тела нужно ввести такие понятия как угловое перемещение Δφ, угловое ускорение ε и угловая скорость ω:

ω=∆φ∆t, (∆t→0),ε=∆φ∆t, (∆t→0).

Углы выражаются в радианах. За положительное направление вращения принимается направление против часовой стрелки.

Когда твердое тело вращается относительно неподвижной оси, все точки этого тела перемещаются с одинаковыми угловыми скоростями и ускорениями.

Рисунок 1. Вращение диска относительно оси, проходящей через его центр O.

Если угловое перемещение Δφ мало, то модуль вектора линейного перемещения ∆s→ некоторого элемента массы Δmвращающегося твердого тела можно выразить соотношением:

∆s=r∆ϕ,

в котором r – модуль радиус-вектора r→.

Между модулями угловой и линейной скоростей можно установить связь посредством равенства

v=rω.

Модули линейного и углового ускорения также взаимосвязаны:

a=aτ=rε.

Векторы v→ и a→=aτ→ направлены по касательной к окружности радиуса r.

Также нам необходимо учесть возникновение нормального или центростремительного ускорения, которое всегда возникает при движении тел по окружности.

Определение 1

Модуль ускорения выражается формулой:

an=v2r=ω2r.

Если разделить вращающееся тело на небольшие фрагменты Δmi, обозначить расстояние до оси вращения через ri, а модули линейных скоростей через vi, то запись формулы кинестетической энергии вращающегося тела будет иметь вид:

Ek=∑iνmvi22=∑i∆m(riω)22=ω22∑i∆miri2.

Определение 2

Физическая величина ∑i∆miri2 носит название момента инерции I тела относительно оси вращения. Она зависит от распределения масс вращающегося тела относительно оси вращения:

I=∑i∆miri2.

В пределе при Δm→0 эта сумма переходит в интеграл. Единица измерения момента инерции в СИ – килограммметр в квадрате (кг·м2). Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде:

Ek=Iω22.

В отличие от выражения, которое мы использовали для описания кинестетической энергии поступательно движущегося тела mv22, вместо массы m в формулу входит момент инерции I. Также мы принимаем во внимание вместо линейной скорости v угловую скорость ω.

Если для динамики поступательного движения основную роль играет масса тела, то в динамике вращательного движения имеет значение момент инерции.

Но если масса – это свойство рассматриваемого твердого тела, которое не зависит от скорости движения и других факторов, то момент инерции зависит от того, вокруг какой оси вращается тело.

Для одного и того же тела момент инерции будет определяться различными осями вращения.

В большинстве задач считается, что ось вращения твердого тела проходит через центр его массы.

Положение xC, yC центра масс для простого случая системы из двух частиц с массами m1 и m2, расположенными в плоскости XY в точках с координатами x1, y1 и x2, y2 определяется выражениями:

xC=m1x1+m2x2m1+m2, yC=m1y1+m2y2m1+m2.

Рисунок 2. Центр масс C системы из двух частиц.

В векторной форме это соотношение принимает вид:

rC→=m1r1→+m2r2→m1+m2.

Аналогично, для системы из многих частиц радиус-вектор rC→ центра масс определяется выражением

rC→=∑miri→∑mi.

Если мы имеем дело с твердым телом, состоящим из одной части, то в приведенном выражении суммы для rC→ необходимо заменить интегралами.

Центр масс в однородном поле тяготения совпадает с центром тяжести.

Это значит, что если мы возьмем тело сложной формы и подвесим его за центр масс, то в однородном поле тяготения это тело будет находиться в равновесии.

Отсюда следует способ определения центра масс сложного тела на практике: его необходимо последовательно подвесить за несколько точек, одновременно отмечая по отвесу вертикальные линии.

Рисунок 3. Определение положения центра масс C тела сложной формы. A1, A2, A3 точки подвеса.

На рисунке мы видим тело, которое подвешено за центр масс. Оно находится в состоянии безразличного равновесия. В однородном поле тяготения равнодействующая сил тяжести приложена к центру масс.

Мы можем представить любое движение твердого тела как сумму двух движений. Первое поступательное, которое производится со скоростью центра масс тела. Второе – это вращение относительно оси, которая проходит через центр масс.

Пример 1

Предположим. Что у нас есть колесо, которое катится по горизонтальной поверхности без проскальзывания. Все точки колеса во время движения перемещаются параллельно одной плоскости. Такое движение мы можем обозначить как плоское.

Теорема о движении центра масс

Определение 3

Кинестетическая энергия вращающегося твердого тела при плоском движении будет равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, которая проведена через центр масс и располагается перпендикулярно плоскостям, в которых движутся все точки тела:

Ek=mvC22+ICω22,

где m – полная масса тела, IC – момент инерции тела относительно оси, проходящей через центр масс.

Рисунок 4. Качение колеса как сумма поступательного движения со скоростью vC→ и вращения с угловой скоростью ω=vCR относительно оси O, проходящей через центр масс.

В механике используется теорема о движении центра масс.

Теорема 1

Любое тело или несколько взаимодействующих тел, которые представляют собой единую систему, обладают центром масс. Этот центр масс под воздействием внешних сил перемещается в пространстве как материальная точка, в которой сосредоточена вся масса системы.

На рисунке мы изобразили движение твердого тела, на которое действуют силы тяжести. Центр масс тела движется по траектории, которая близка к параболе, тогда как траектория остальных точек тела является более сложной.

Рисунок 5. Движение твердого тела под действием силы тяжести.

Теорема Штейнера о параллельном переносе оси вращения

Рассмотрим случай, когда твердое тело движется вокруг некоторой неподвижной оси. Момент инерции этого тела инерции I можно выразить через момент инерции IC этого тела относительно оси, проходящей через центр масс тела и параллельной первой.

Рисунок 6. К доказательству теоремы о параллельном переносе оси вращения.

Пример 2

Для примера возьмем твердое тело, форма которого произвольна. Обозначим центр масс С. Выберем систему координат ХУ с началом координат 0. Совместим центр масс и начало координат.

Одна из осей проходит через центр масс С. Вторая ось пересекает произвольно выбранную точку Р, которая расположена на расстоянии d от начала координат. Выделим некоторый малый элемент массы данного твердого тела Δmi.

По определению момента инерции:

IC=∑∆mi(xi2+yi2),IP=∑mi(xi-a)2+yi-b2

Выражение для IP можно переписать в виде:

IP=∑∆mi(xi2+yi2)+∑∆mi(a2+b2)-2a∑∆mixi-2b∑∆miyi.

Два последних члена уравнения обращаются в нуль, так как начало координат в нашем случае совпадает с центром масс тела.

Так мы пришли к формуле теоремы Штейнера о параллельном переносе оси вращения.

Теорема 2

Для тела, которое вращается относительно произвольной неподвижной оси, момент инерции, согласно теореме Штейнера, равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями.

IP=IC+md2,

где m – полная масса тела.

Рисунок 7. Модель момента инерции.

На рисунке ниже изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Рисунок 8. Моменты инерции IC некоторых однородных твердых тел.

Основное уравнение динамики вращательного движения твердого тела

В тех случаях, когда мы имеем дело с твердым телом, которое вращается относительно неподвижной оси, мы можем обобщить второй закон Ньютона. На рисунке ниже мы изобразили твердое тело произвольной формы, вращающееся относительно некоторой оси, проходящей через точку О. Ось вращения расположена перпендикулярно плоскости рисунка.

Δmi – это произвольный малый элемент массы, на который оказывают воздействие внешние и внутренние силы. Равнодействующая всех сил есть Fi→. Ее можно разложить на две составляющие: касательную составляющую Fiτ→ и радиальную Fir→. Радиальная составляющая Fir→ создает центростремительное ускорение an.

Рисунок 9. Касательная Fiτ→ и радиальная Fir→ составляющие силы Fi→ действующей на элемент Δmi твердого тела.

Касательная составляющая Fiτ→ вызывает тангенциальное ускорение aiτ→ массы Δmi. Второй закон Ньютона, записанный в скалярной форме, дает

∆miaiτ=Fiτsin θ или ∆miriε=Fisin θ,

где ε=aiτri – угловое ускорение всех точек твердого тела.

Если обе части написанного выше уравнения умножить на ri, то мы получим:

∆miri2ε=Firisin θ=Fili=Mi.

Здесь li – плечо силы, Fi,→Mi – момент силы.

Теперь нужно аналогичные соотношения записать для всех элементов массы Δmi вращающегося твердого тела, а затем просуммировать левые и правые части. Это дает:

∑∆miri2ε=∑Mi.

Стоящая в правой части сумма моментов сил, действующих на различные точки твердого тела, состоит из суммы моментов всех внешних сил и суммы моментов всех внутренних сил.

∑M=∑Miвнешн+∑Miвнутр.

Но сумма моментов всех внутренних сил согласно третьему закону Ньютона равна нулю, поэтому в правой части остается только сумма моментов всех внешнихсил, которые мы будем обозначать через M. Так мы получили основное уравнение динамики вращательного движения твердого тела.

Определение 4

Угловое ускорение ε и момент сил M в этом уравнении являются величинами алгебраическими.

Iε=M

Обычно за положительное направление вращения принимают направление против часовой стрелки.

Возможна и векторная форма записи основного уравнения динамики вращательного движения, при которой величины ω→, ε→, M→ определяются как векторы, направленные по оси вращения.

Закон сохранения момента импульса

В разделе, посвященном поступательному движению тела, мы ввели понятие импульса тела p→. По аналогии с поступательным движением для вращательного движения мы вводим понятие момента импульса.

Определение 5

Момент импульса вращающегося тела – это физическая величина, которая равняется произведению момента инерции тела I на угловую скорость ω его вращения.

Для обозначения момента импульса используется латинская буква L. 

L=lω

Поскольку ε=∆ω∆t; ∆t→0, уравнение вращательного движения можно представить в виде:

M=Iε=I∆ω∆t или M∆t=I∆ω=∆L.

Получаем:

M=∆L∆t; (∆t→0).

Мы получили это уравнение для случая, когда I = const. Но оно будет справедливо и тогда, когда момент инерции тела будет изменяться в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L=Iω относительно данной оси сохраняется: ∆L=0, если M=0.

Определение 6

Следовательно,

L=lω=const.

Так мы пришли к закону сохранения момента импульса.

Пример 3

В качестве примера приведем рисунок, на котором изображено неупругое вращательное столкновение дисков, которые насажены на общую для них ось.

Рисунок 10. Неупругое вращательное столкновение двух дисков. Закон сохранения момента импульса: I1ω1=(I1+I2)ω.

Мы имеем дело с замкнутой системой. Для любой замкнутой системы закон сохранения момента импульса будет справедливым. Он выполняется и в условиях экспериментов по механике, и в условиях космоса, когда планеты движутся по своим орбитам вокруг звезды.

Мы можем записать уравнение динамики вращательного движения как для неподвижной оси, так и для оси, которая перемещается равномерно или с ускорением. Вид уравнения не изменится и в том случае, если ось движется ускоренно. Для этого должно выполняться два условия: ось должна проходить через центр массы тела, а ее направление в пространстве остается неизменным.

Пример 4

Предположим, что у нас есть тело (шар или цилиндр), которое катится по наклонной плоскости с некоторым трением.

Рисунок 11. Качение симметричного тела по наклонной плоскости.

Ось вращения O проходит через центр масс тела. Моменты силы тяжести mg→ и силы реакции N→ относительно оси O равны нулю. Момент M создает только сила трения: M = FтрR.

Уравнение вращательного движения:

ICε=ICaR=M=FтрR,

где ε – угловое ускорение катящегося тела, a – линейное ускорение его центра масс, IC – момент инерции относительно оси O, проходящей через центр масс.

Второй закон Ньютона для поступательного движения центра масс записывается в виде:

ma=mg sin α-Fтр.

Исключая из этих уравнений Fтр, получим окончательно:

α=mg sin θICR2+m.

Из этого выражения видно, что быстрее будет скатываться с наклонной плоскости тело, обладающее меньшим моментом инерции. Например, у шара IC=25mR2, а у сплошного однородного цилиндра IC=12mR2. Следовательно, шар будет скатываться быстрее цилиндра.

Источник: https://Zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/vraschenie-tverdogo-tela/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.